ダブルピニオン遊星歯車変速機を用いた2モータ EV システムの検討

A Study of Two-Motor EV System Applying Double-Pinion Planetary Gear Transmission

Noritaka Matsuo

Powertrain consisting of two motors and a planetary gear transmission enables high-efficiency operation of the motors, while the difference in motor shaft speed causes power loss in the planetary gear set. In this report, a control method for maximizing the overall powertrain efficiency of a 2-motor EV using a planetary gear transmission is examined, and the mode electric mileage is compared with that of a 2-motor EV with a 2-speed transmission.

Key Words: power transmission, EV and HV system, drive train, transfer, dual motor drive system, Simulation (A3)

1. まえがき

2023 年現在、事実上の純エンジン車の排除を意味する Euro7 規制が欧州議会で審議されるなど世界的な EV シフ トは加速されつつある.一般論として EV はエンジン車に対 し変速機が不要とされるが、今後 EV の普及が進み自動車 としての性能競争が厳しくなれば走行性能と電費を両立さ せるためモータをより高効率な運転域で使用できるよう 変速機は不可欠になるものと予想される.

ただ、1 基(Single)のモータと変速機を組み合わせでは図-1 のようにモータの T-N 上の運転ポイントは等パワー曲線 上を移動するのみであり最も効率の高い領域を使用するこ とは難しい. これに対し2基(Dual)のモータを図-2の1&2 または1&3など4象限内の任意ポイントで運転し合わせた 出力を取り出すことができる変速機を用いればシステム全 体で高効率な運転が可能と考えられる.

本報では2基のモータと遊星歯車変速機を用いた EV シス テムについてその構造やシステム効率を最大化する方法を

Fig.1 Working Points of Single Motor with Transmission

 松尾技術士事務所(436-0062 静岡県掛川市旭ヶ丘 1-15-12 Email:mcc-matsuo@mail.wbs.ne.jp) 検討する.またシミュレーションによりモード走行電費を 求め同じく2速変速機を用いた2モータEVと比較する.

2. 遊星歯車変速機を用いた2モータEVシステム

遊星歯車機構としてはサンギアとキャリア軸をモータ入 力軸、リングギアを出力軸とするシングルピニオン方式が HEV で使用されているがこの方式では2つのモータの最大 出力を同時に入力するためにはキャリア軸に対しサンギア を高速で逆転させる必要があり、またサンギア軸とキャリ ア軸のトルク比がサンギアとリングギアの歯数比に律せら れるため同じ性能のモータ2基を用いるには適していない. そこでダブルピニオン遊星歯車(以降 DPLG)方式を使用す る.2モータ EV 用の DPLG については既にいくつかの方式 が報告されているが 1),2)、今回は図-3 に示すように 2本の サンギアS.L軸をモータ入力軸としリングギアRを出力軸 とする方式とする.当方式ではS,L軸を同じ方向に回転さ せながら同じ方向にトルクを入力して R から合わせて出力 することができる. また S, L および R の歯数比を適切に設 定することで S.L 軸のトルクを等しくすることができるの で同一諸元のモータ2基を用いるのに適している.

またキャリア C をフリー回転させて S,L の速度比を連続 可変に制御する Carrier Free(以降 CF)モードと C の回転を OWC により片方向拘束して S,L の速度比を固定する Carrier Constrained(以降 CC)モードのいずれかで運転できる.

. Fig.3 Schematic of Double Pinion Planetary Gear Set (DPLG)

2.1 DPLG の Kinematics(運動学)

Fig.4 Collinear Chart of DPLG in CF Mode

Fig.5 Collinear Chart of DPLG in CC Mode

図-4,5に各々CFモードとCCモードの共線図を示す. リングギア R に作用する走行抵抗による負荷トルク T_R(-) とサンギア S,Lに作用するモータトルク T_S,T_Lがバランス する. 速度およびトルクの関係式を表-1にまとめて示す.

Table-1	Equations	OI	Kinematics	OI	DPLG

	Mode	Variable	Equations
		Speed	$(\alpha - 1) \omega_L + (\beta + 1) \omega_S - (\alpha + \beta) \omega_R = 0$
			$\beta \omega_{S} + \alpha \omega_{L} - (\alpha + \beta) \omega_{C} = 0$
CF	CE		$\omega c>0$ (OWC Constraint)
		$(\alpha + \beta)T_{s} + (\beta + 1)T_{R} = 0$	
		Torque	$(\alpha + \beta) T_L + (\alpha - 1)T_R = 0$
			$T_C=0$ (Carrier Free)
		Speed	$\omega_{S} - \alpha \ \omega_{R} = 0$
СС			$\omega_L + \beta \omega_R = 0$
	CC		$\omega_C = 0$ (OWC Constraint)
	u	Torque	$\beta T_L - \alpha T_S - T_R = 0$
			$T_C = (\alpha - 1) T_S - (\beta + 1)T_S$
		$T_{C} > 0$ (OWC Reaction Torque)	

走行計算では式の中で ω_{R} 、 T_{R} は各々車速と走行抵抗から 決まる既知変数として扱う. CFモードのトルク式より $T_L/T_s=(\alpha-1)/(\beta+1)$ と一定であり、また α - $\beta=2$ のとき $T_L=T_S$ つまり S, L軸の入力トルクを等しくできる.

2.2 DPLG の動力伝達効率

通常変速機内部では動力損失が生じる.主な損失要因は ギア歯面の摩擦損失、軸受け損失、潤滑油の粘性による 損失等であるが中でも最大の損失要因は歯面の摩擦損失で ありその大きさはギア間の動力伝達効率として表される.

ギア間の伝達効率をパラメータとしてダブルピニオン遊 星歯車機構の効率を求めるパワーフロー解析理論に関して は Esmail らにより詳細な報告がなされている.^{3,4)} 1. DPLG のパワーフロー解析の基本式

パワーフロー解析にはキャリア軸基準回転座標系(c-MRF)を用いる. c-MRF系でのパワーフローの基本式は(1)式となる.

P はパワーを、x は駆動側要素、y は被駆動側要素、c はキ ャリア、f は固定要素を、また R^{Z}_{vx} は速度比を表し

$$R^{z}_{y,x} = \frac{\omega_{y} - \omega_{z}}{\omega_{x} - \omega_{z}} \qquad (2)$$

z=fでは $\omega_f=0$ であり $R_{y,x}^f = \omega_y / \omega_x となる. また <math>\eta_{c(x-y)}$ はパ ワーが x から c を介して y への伝達経路する際の総伝達効 率を意味し S と Pi 間、Pi と Po 間、および Po と R 間の伝達 効率を各々 η_1 、 η_2 、 η_3 とすると

$$\begin{split} & \mathcal{I}_{c}(S\text{-}R) = \ \mathcal{I} \ 1^{*} \ \mathcal{I} \ 2^{*} \ \mathcal{I} \ 3 \ , \ \mathcal{I}_{c}(L\text{-}R) = \ \mathcal{I} \ 1^{*} \ \mathcal{I} \ 2 \ , \ \mathcal{I}_{c}(S\text{-}L) = \ \mathcal{I} \ 1^{*} \ \mathcal{I} \ 2^{*} \ \mathcal{I} \ 2 \\ & \geq \ \mathcal{I}_{a} \ \mathcal{Z} \ . \end{split}$$

2. CFモードのパワーフロー

a) Under-Drive (UD)運転

○駆動走行時 (T_R<0; P_R<0)

図-4 で S の速度が出力軸である R より大きい状態を Under-Drive(UD)と呼ぶ. UD では $\omega_{S} > \omega_{R} > \omega_{C} > \omega_{L}$ であり、 また同図では T_R<0、T_S>0、T_L>0となっており車両系では モータ A, B のパワーが S, L 軸に入力され R を駆動してい るが、一方 c-MRF 系においては

T_s・(*ωs*-*ωc*)>0 ∴ S は駆動要素

- *T*_L · (ω_L-ωc)<0 : L は被駆動要素
- *T_R*・(*ω_R*-*ωc*)<0∴R は被駆動要素

となり c-MRF 系でのパワーフローは図-6のようになる.

Fig.6 The Power Flow in c-MRF (CF;UD ; $P_R < 0$)

Sのパワー P_s のうちCを介してLに伝達される分を P_{S1} 、Rに伝達される分を P_{S2} とすると(1)式より

$$\frac{P_{S1}}{R^{c}_{L,S}} = -\frac{P_{L}}{\eta_{c(S-L)}R^{f}_{L,S}} = \frac{P_{C1}}{(\eta_{c(S-L)} - R^{c}_{L,S})R^{f}_{c,S}}$$
(3)

-----(4)

$$\frac{P_{S2}}{R^{c}_{R,S}} = -\frac{P_{R}}{\eta_{c(S-R)}R^{f}_{R,S}} = \frac{P_{C2}}{(\eta_{c(S-R)}-R^{c}_{R,S})R^{f}_{c,S}}$$

また各変数の定義から

 $P_{C1} + P_{C2} = P_C = 0 \ (T_c = 0) \ \dots \ (6)$

 $P_{R}(=T_{R} \cdot \omega_{R})$ は車速と走行抵抗から決まる既知変数であり Ps, PLは(3)~(6)式を用いて求めることができる.

Ps、PL、PRの値は運転状態により正負のいずれかの状態を 取り得るが **Ps**, **PL**, **PR**のうち値が(+)の要素を **P**⁺、(-)の要素 を **P**とすると *nPLG*は運転モードに関わらず次の(7)式で 求められる.

η PLG= - *Σ*(*P*⁻) / *Σ*(*P*⁺)-----(7) ○被駆動走行時(T_R>0; P_R>0)

次に車両系では回生ブレーキング時など R が S,L 軸を駆動 する場合、c-MRF系においては $P_R \ge P_L$ が P_S を駆動する状 態となる. Ps, PL は(8)、(9)、および(5)、(6)式から求め、 伝達効率 η_{PLG} は(7)式で求める.

b) Over-Drive (OD)運転

図-4でSの速度がRの速度より小さくωL>ωC>ωR>ωS となる状態をOver-Drive(OD)と呼ぶ. 詳細は略すがODで Ps, PLを求める式は駆動走行時(TR<0)は UD の被駆動走行 時(TR>0)と、被駆動走行時(TR>0)は UD の駆動走行時 (TR<0)と同じになる

c) Direct-Drive(DD)運転

同じく S と R の速度が等しく $\omega_{L}=\omega_{C}=\omega_{R}=\omega_{S}$ となる 状態をDirect-Drive(DD)と呼ぶ. DDではギア摩擦損失が発 生しないので $\eta_{PLG}=1.0$ である.

Fig. 7 Transmission Efficiency (CF, $P_R < 0$, $\eta_{1=} \eta_{2=} \eta_{3=} 0.98$)

図-7にCFモードでの伝達効率 *nPLG*を示す. 横軸はサン ギアSのリングギアRに対する相対速度を意味する無次元 速度NDSとしている. *nPLG*はNDS=1.0(DD)の時最大値1.0 となりOD側、UD側どちらもNDSが1.0から離れる程低 下する.またサンギアSに対しピニオンギアPi,Poの径が小 さくなる程効率は低下する. これよりDPLG全体のコン パクト性と効率との間には相反性があることがわかる.

3. CC モードのパワーフロー

図-5 では $\omega_R>0$ T_R<0、 $\omega_s>0$ T_S>0、 $\omega_L<0$ T_L<0 となって おり車両系ではモータA, BのパワーがS, L軸に入力されR を駆動しているが c-MRF系ではS, Lが駆動要素、Rが被駆 動要素となりPs, PLは(10)~(12)式から求め、伝達効率 η_{PLG} は(7)式で求めることができる. 図-8 に CC モードでの伝 達効率 η_{PLG} を示す. 横軸はサンギアSのリングギアRに

Fig. 8 Transmission Efficiency (CC, $P_R < 0$, $\eta_{1=\eta_2=\eta_3=0.98}$) 対する相対パワーを意味する無次元パワーNDPとしている. NDP=0 では S は空転、NDP=1 では L が空転する. NDP>1 で は S が L と R を駆動するので $\eta_{PLG=\eta_1}$ と一定になる.

2.3 2 モータ EV のシステム総合効率

Fig.9 Power Flow of Power System of 2-Motor EV System バッテリから駆動輪に至るパワーシステムのフローを図-9 に示す. 同図では電力を E、機械的パワーを W として区 別している.Eはバッテリ電力の入/出力、 W_T は DPLGの リングの入/出力、 W_W は駆動輪の入/出力であり、 W_T は 2.2 のパワー P_R に対し $W_{T=-} P_R$ とする.したがって駆動走行時 は E >0, W_T >0, W_W >0 であり被駆動走行時は E <0, W_T <0, W_W <0 である.

 W_W および W_T は車速と走行抵抗から別途求められる. また今回は E と W_T の比率を 2 モータ EV システムの総合 効率 η_s と定義する.

 $\eta_s = W_T / E (E>0, W_T>0)$ ------(13) $\eta_s = E / W_T (E < 0, W_T < 0)$ ------(14) 電力フローにおいてモータAおよびモータBに関わる電力 を各々EA、EBとする.また 2.2 における Ps, PLを各々WA, WB に置き換える. インバータ効率 η_{inv} を一定とし、モータA , Bの効率を各々 η_A, η_B とする. E4=1/(η_{inv} : η_A): WA (WA>0)------(15)

LA = II (1/mv //A) IIA ((15)
$E_A = \eta_{inv} \cdot \eta_B \cdot W_A (W_A)$	<0)(16)
EBも同様の式で求める.	また E は E _A と E _B の和であり
$E = E_A + E_B$	(17)

(17)式と(13)または(14)式により総合効率ηsが求まる.

2.3 システム総合効率の最大化制御

1. 最大総合効率の探索手順と制約条件

 η_s を最大にする条件について検討する. リング回転数 を N_T 、リングパワー W_T とした時、運転ポイント(N_T,W_T)毎 にモータ A, Bの回転数を N_A , N_B , パワーを W_A, W_B として η_s を最大にする条件を求める. 探索における制約条件は まずモータ A, Bの運転ポイント(N_A , W_A) (N_B , W_B)が許容 範囲内にあること

 $(N_A, W_A) \in R_A$ $(N_B, W_B) \in R_B$ ------(18) 但し R_A, R_B はモータ A, B の 4 象限運転範囲を示す.

また CF モードでは OWC によるキャリア速度制限 Nc>0、 CC モードではキャリアトルク反力制限 Tc>0 を加える.

2. モータと DPLG 諸元

表-2 にシステムの主要諸元を示す. DPLG のギア比を α - β =2 とするとサンギアSとLトルク比をほぼ1:1 (ギア 伝達効率 η 1.2.3 により僅かに差が生じる)とすることがで き同一諸元のモータA, Bを使用するのに適している. また ギア間の伝達効率は全て 0.98 とする.図-10 にはモータ効 率マップを示す.

Fig.12 Speed Difference between Motor-A and B (A-B)

Fig.13 Efficiency Improvement Compared with Direct-Drive

DD運転では *n PLG* =1 であり、したがって DD運転時の *ns*を総合効率の基準*ns^Dと*する.図-11 に CFモードでの最 大総合効率*n s^{max}*のマップを、図-12 には*n s^{max}*を得る時の モータ A, B の速度差分布を、また図-13 には*n s^D*からの効 率向上率を示す.モータ速度差が 50rpm 以下、効率向上率 が 1%以下の領域が広く分布しており CFモードの狙いであ るモータの速度差を利用した効率向上は低速域に限られる ことがわかる.これは図-7 に示すように速度差が大きくな る程 DPLG の効率が低下するのでモータ効率の向上と相殺 するためである.ただし低速ではたとえ DPLG の効率は低 下してもモータ A, B の速度差を大きくして各々の効率の 良い点で運転することで*n s^D*を上回る*n s^{max}*が得られる. 4. CC モードでの最大総合効率

図-14に CC モードでの *ŋs^{max}マップを示す*. CC モードで はリングギア R に対するモータ速度比が大きくしかも固定 されるので CF モードに比ベリングギアの最大速度は小と なり、正の最大トルクは大となる.

Fig.15 Efficiency Improvement Compared with Direct-Drive

図-15 に CC モードの *ŋ*,*max* を *ŋ*,*P* と比較した結果を示す. 低速で CC モードの向上が大きくしかも正トルク側では図-13 の CF モードの向上率より大きい. 一方負トルク側でも 向上するものの CF モードの向上率より小さい. 以上の結 果から両モード合わせた最大の *ŋ*,*max* を得るためには走行 中に CF、CC モード間のシフトが必要であることがわかる.

4. モードシフトの方法と課題

走行中にショックのないシフトを行うためにはシフト期 間中の駆動力(DPLGではリングトルT_R)の変化がなく しかも短時間でシフト動作を完了させる必要がある.

例えば図-16 a) に示すように CF モードの DD 運転で定常走 行中に CC モードへシフトする場合、DD でのモータ運転 ポイント P1 を出発点にモータ A のトルクを青色の最大ト ルクラインに沿って制御して A を加速(同時に B を逆方向 に加速) させ、これに対し赤色のモータ B のトルクをリン グトルクが T_R 一定となるよう制御しながら A, B の速度を CC モードでの各目標速度まで到達させればキャリア速度 は0 (CF から CC への遷移) となり、その後は A, B のトル クをリングトルク T_R 一定となるよう制御しながら最終目 標ポイント CC-A, CC-B に到達させれば CC モードへのシ フトが完了する.図-16 b)にサンギアとモータの合計慣性モ ーメントを 0.05kgm2 としリング速度 1200rpm, 同トルク 140Nm におけるシフト中の DPLG の各要素のトルクと速度 の時間変化を示す.

Fig.16 A Methodology of Shock-Free Shifting

一方図-16 a)において T_R が P2 まで大きくなりモータの 加速トルクが小さくなるとモータ A の速度は目標である CC-A まで到達できなくなりシフトを完了させるには T_Rを 下げざるを得なくなる. このようにショックのないシフ トを実行できるリング速度とリングトルクには上限がある. 図-17 にショックなしのシフト線図を示す. 低速では両モー ドの効率の優劣により決まる黒いシフト線に沿って CC→ CF、CF→CC の双方向シフトが可能であるが、高速では CF→CC は不可であり赤いシフト線に沿って CC→CF のみ 可能である. 以上、走行中のモードシフトが今回の DPLG を用いた 2モータ EV の課題である.

Fig.17 Shift Diagram Considering Efficiency and Shock-Free

3.2 モータ EV のモード走行電費

DPLGを用いた2モータEVのWLTCモード電費のシミュ レーションを行った.また同じく2モータ用 DMM 方式⁵⁾ の2速変速機を使用した場合との比較を行った.

1. 車両諸元

表-3に車両の主要諸元を示す.

Table-3 Specifications of the EV

Parameter	Specifications
Vehicle Weight	1310kg
Projected Front Area	2.5m2
Drag Coefficient	0.25
Rolling Coefficient	0.01
Final Gear Ratio (Rf)	3.5 :1
Tire Effective Radius	0.31m
Motor and Transmission	Refer to Table-2

2. DMM 変速機

Dog Clutch

Fig.18 Schematic of DMM Transmission

図-18 に変速機の構造略図を、表-4 には効率計算に必要 な諸元を示す. ギア比 α , β は出力軸トルクが極力 DPLG に 合うよう設定した. 同変速機はモータ A, B を 1 基づつ使用 する 2 つの 1MotorMode とドグクラッチ OFF、OWC ON で 2 基のモータが異なる速度で動作する High Combination Mode (以降 HC) とドグクラッチ ON、OWC OFF で 2 基の モータが等速で動作する 2Motor High Mode(以降 2MH)の 4 モードを使い分けることができる. 今回は DPLG 方式と比 較する目的で 2 基のモータを使用する HC, 2MH の 2 つのモ ードのみを用いることとした.

Fig.19 Comparison of Motor Control of DPLG and DMM

図-19 に DPLG の CF モードと DMM の 2MH モードの モータ制御の比較を示す.要求出力(速度,トルク)に対し DPLG ではモータトルク比は固定でモータの速度比を制御 できるのに対し DMM では速度比は 1:1 固定でトルク比を 制御できるところが両者の特徴であり、これが両者の最大 総合効率 *n*^{max} マップの差として表れる.図-20,21 に DMM の *n*^{smax} マップとシフトダイアグラムを示す.

Fig.20 Max. System Efficiency of DMM

Fig.21 Shift Diagram of DMM

次に図-22 で DMM の 2MH モードの η_s^{max} を DPLG(η_s^{D}) と比較すると低トルク域で DMM の方が高くなっている. これは図-19 に示すように DPLG ではモータトルクは共に 出力軸トルクの 1/2 でありモータ効率が低いのに対し DMM ではモータ効率がより高い 2 つのトルク点を使用できるた めである.また低トルク域以外の広い運転域で DPLG(η_s^{D}) の方が高いのは変速機の伝達効率の差(DD=1.0, DMM=0.96) による.

Fig.22 Comparison of System Efficiency DMM to DPLG 3. WLTC 電費

シミュレーションにより DPLG と DMM の WLTC モード 電費を比較し、DPLG の方が 2.25% 良いという結果を得た (表-5). なお計算には効率マップを参照する逆解析モデル を使用し,機構の動特性や電力系の応答などは考慮されて いない.

Table 5	Electric	Milana	:	WITC	Mada
rable-5	Elecuric	wineage	ш	WLIC	woue

Fig.23 Plots of Motor Working Point of DPLG

Fig.24 T Plots of Motor Working Point of DMM

図-23,24に走行時のモータ運転ポイントを示す.モータ Aの回転域を DMMの HC モードと DPLGの CC モードで 比較すると CC モードの方が HC モードより低い.これは図 -21 に示すとおり DMMの HC モードは R ギアの 2,200rpm まで使用できるのに対し CC モードは図-17に示すとおりシ ョックなしシフトのためにリングギア Rの 1,200rpm 以下 でしか使用しないためである.また DPLGの CF モードで は DD に近く変速機の伝達効率が高い状態での運転時間が 長いことがモード電費の良さに寄与している.

4.まとめ

1.2 基のモータとダブルピニオン遊星歯車変速機からなる 2モータ EV システムのパワーフロー解析を行い, バッテリ からの入力電力と変速機出力との比率を駆動系の総合効率 と定義しその最大化について検討した.

2. キャリアフリー運転(CFモード)ではモータ効率の向上と 変速機の伝達効率の低下が相殺しモータの等速運転時に比 較して総合効率の向上は少ない.

3. キャリア拘束運転(CC モード)では CF モードに比べ低速 域で総合効率が向上する. したがってシステムとして高 い総合効率を得るためには走行中にモードシフトが必要で あるがショックのないシフト方法が課題である.

4. シミュレーションにより遊星歯車変速機と2速変速機に よる2モータ EVの WLTCモード電費を比較した. 今回の 計算では遊星歯車変速機の方が電費が優れているという 結果となった.

5.参考文献

 中澤他:2モータEVシステム技術の検討,自動車技術会 論文集 Vol.51, No.3, May2020

 山本他:2モータ式ホイールハブを搭載した実験車両とその走行評価,自動車技術会2016秋季学術講演会予稿集
Esmail, E.L." Influence of the Operating Conditions of Two-Degree-of-Freedom Planetary Gear Trains on Tooth Friction Losses", Journal of Mechanical Design 140 (5) (2018) 054501.
Anahed H Juber et. al. "Power Flow and Efficiency Analysis of a Ravigneaux Hybrid Transmission", IOP Conf. Series: Materials Science and Engineering 870 (2020) 012160.

5) https://www.uvc.co.jp/product/exhibition/jsae2021-1