3°刻みの三角比の値

値の求め方は、PDF にあります。

3°刻みの三角比

\( \\ \begin{cases} \sin0°=0 \\ \cos0°=1 \end{cases} \\ \begin{cases} \sin3°=\displaystyle\frac{\sqrt{2}(\sqrt{3}+1)(\sqrt{5}-1)-2(\sqrt{3}-1) \sqrt{\sqrt{5}+5}}{16} \\ \cos3°=\displaystyle\frac{\sqrt{2}(\sqrt{3}-1)(\sqrt{5}-1)+2(\sqrt{3}+1) \sqrt{\sqrt{5}+5}}{16} \end{cases} \\ \begin{cases} \sin6°=\displaystyle\frac{\sqrt{2}\sqrt{3}(\sqrt{5}-1)\sqrt{\sqrt{5}+5}-2(\sqrt{5}+1)}{16} \\ \cos6°=\displaystyle\frac{\sqrt{2}(\sqrt{5}-1)\sqrt{\sqrt{5}+5}+2\sqrt{3}(\sqrt{5}+1)}{16} \end{cases} \\ \begin{cases} \sin9°=\displaystyle\frac{\sqrt{2}(\sqrt{5}+1)-(\sqrt{5}-1)\sqrt{\sqrt{5}+5}}{8} \\ \cos9°=\displaystyle\frac{\sqrt{2}(\sqrt{5}+1)+(\sqrt{5}-1)\sqrt{\sqrt{5}+5}}{8} \end{cases} \\ \begin{cases} \sin12°=\displaystyle\frac{\sqrt{2}\sqrt{\sqrt{5}+5}-\sqrt{3}(\sqrt{5}-1)}{8} \\ \cos12°=\displaystyle\frac{\sqrt{2}\sqrt{3}\sqrt{\sqrt{5}+5}+(\sqrt{5}-1)}{8} \end{cases} \\ \begin{cases} \sin15°=\displaystyle\frac{\sqrt{2}(\sqrt{3}-1)}{4} \\ \cos15°=\displaystyle\frac{\sqrt{2}(\sqrt{3}+1)}{4} \end{cases} \\ \begin{cases} \sin18°=\displaystyle\frac{ \sqrt{5}-1}{4} \\ \cos18°=\displaystyle\frac{ \sqrt{2}\sqrt{\sqrt{5}+5} }{4} \end{cases} \\ \begin{cases} \sin21°=\displaystyle\frac{ (\sqrt{3}+1)(\sqrt{5}-1) \sqrt{\sqrt{5}+5}-\sqrt{2}(\sqrt{3}-1)(\sqrt{5}+1) }{16} \\ \cos21°=\displaystyle\frac{ (\sqrt{3}-1)(\sqrt{5}-1) \sqrt{\sqrt{5}+5}+\sqrt{2}(\sqrt{3}+1)(\sqrt{5}+1) }{16} \end{cases} \\ \begin{cases} \sin24°=\displaystyle\frac{ 2\sqrt{3}(\sqrt{5}+1)-\sqrt{2}(\sqrt{5}-1)\sqrt{\sqrt{5}+5} }{16} \\ \cos24°=\displaystyle\frac{ 2(\sqrt{5}+1)+\sqrt{2}\sqrt{3}(\sqrt{5}-1)\sqrt{\sqrt{5}+5} }{16} \end{cases} \\ \begin{cases} \sin27°=\displaystyle\frac{ 2\sqrt{\sqrt{5}+5}-\sqrt{2}(\sqrt{5}-1) }{8} \\ \cos27°=\displaystyle\frac{ 2\sqrt{\sqrt{5}+5}+\sqrt{2}(\sqrt{5}-1) }{8} \end{cases} \\ \begin{cases} \sin30°=\displaystyle\frac{ 1 }{ 2 } \\ \cos30°=\displaystyle\frac{ \sqrt{ 3 } }{ 2 } \end{cases} \\ \begin{cases} \sin33°=\displaystyle\frac{ 2(\sqrt{3}-1) \sqrt{\sqrt{5}+5} + \sqrt{2}(\sqrt{3}+1)(\sqrt{5}-1) }{16} \\ \cos33°=\displaystyle\frac{ 2(\sqrt{3}+1) \sqrt{\sqrt{5}+5} - \sqrt{2}(\sqrt{3}-1)(\sqrt{5}-1) }{16} \end{cases} \\ \begin{cases} \sin36°=\displaystyle\frac{ \sqrt{2}( \sqrt{5}-1 )\sqrt{\sqrt{5}+5} }{8} \\ \cos36°=\displaystyle\frac{ \sqrt{5}+1}{4} \end{cases} \\ \begin{cases} \sin39°=\displaystyle\frac{ \sqrt{2}( \sqrt{3}+1 )( \sqrt{5}+1 ) - ( \sqrt{3}-1 )( \sqrt{5}-1 ) \sqrt{\sqrt{5}+5}}{16} \\ \cos39°=\displaystyle\frac{ \sqrt{2}( \sqrt{3}-1 )( \sqrt{5}+1 ) + ( \sqrt{3}+1 )( \sqrt{5}-1 ) \sqrt{\sqrt{5}+5}}{16} \end{cases} \\ \begin{cases} \sin42°=\displaystyle\frac{ \sqrt{2}\sqrt{3}\sqrt{\sqrt{5}+5} - (\sqrt{5}-1) }{8} \\ \cos42°=\displaystyle\frac{ \sqrt{2}\sqrt{\sqrt{5}+5} + \sqrt{3}(\sqrt{5}-1) }{8} \end{cases} \\ \begin{cases} \sin45°=\displaystyle\frac{ \sqrt{ 2 } }{ 2 } \\ \cos45°=\displaystyle\frac{ \sqrt{ 2 } }{ 2 } \end{cases} \)

[トップへ]